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BITCOIN CASH: STOCHASTIC MODELS OF FAT-TAIL 

RETURNS AND RISK MODELING 

 

 
Abstract. Bitcoin (BTC) is a digital currency that has gained significant 

attention from researchers. The aim of this paper consists in analyzing some 

stochastic models of fat-tail returns and risk models. The evidence of fat-tailed 
returns distribution for the BCH data is investigated, by performing a statistical 

analysis of Bitcoin Cash (BCH) in the U.S. dollar. By using daily Close, Open, 

Low, and High returns of BCH data series, the monthly-divided daily returns study 
describes further properties such as skewness, kurtosis, and correlation analysis. 

The results obtained prove that variance gamma distribution best fit the close, 

open and low returns, where high returns follow the generalized hyperbolic 

distribution. In addition, for the best-fitted fat-tailed returns distributions, several 
risk measures such as volatility, Value-at-Risk and Expected Shortfall measures 

are computed, analyzed and compared. 

Keywords: Cryptocurrency, Fat-tail distributions, Value-at-Risk, Bitcoin 
Cash, Expected Shortfall.  
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1. Introduction and Literature Review 

Since 2009, numerous cryptocurrencies have been developed 

(CoinMarketCap, 2019). In the list of cryptocurrencies Bitcoin is the most popular, 
representing the highest market cap. Bitcoin Cash (BCH) is a branch of Bitcoin 

(BTC), as by August 2017 the bitcoin ledger has divided into two assets. Therefore, 

anyone owning bitcoin was also in possession of the same number of Bitcoin Cash 
units. BTC & BCH share the same transaction history. Recently, the research on 

cryptocurrencies is receiving significant attention. Bitcoin is probably the most 

debatable and successful among the list of all cryptocurrencies to date. Nowadays 

Bitcoin is considered as an asset rather than a currency. If we want to understand 



 

 
 

 

 

 
Muhammad Sheraz, Silvia Dedu  

____________________________________________________________ 

44 

DOI: 10.24818/18423264/54.3.20.03 

the market dynamics of cryptocurrency, then it is important to analyze the 
statistical properties of their returns. At this point, it is vital to investigate whether 

these returns behave similarly to other assets. Examples of such assets include 

currency, commodity or a stock. Therefore, it is now important to study the 
statistical properties of BCH, which represents a branch of BTC. 

The random variation in asset prices share some common properties. These 

common facts among various markets, such as stocks, instruments for example 

'derivatives' and time periods, are called stylized facts. Therefore, in general, stock 
returns and foreign exchange rates exhibit leptokurtosis and stochastic volatility. 

Rama Cont (2001) investigated facts emerging from the statistical analysis of price 

variations in various types of financial markets. The stylized statistical properties 
of a financial asset may include heavy-tail (conditional/unconditional), Normally 

distributed returns, volatility clustering, autocorrelation and leverage effect. In 

financial time series prices usually down movements are frequent that of the 
upward. It validates the presence of asymmetry in aggregate loss and gain. 

Any distribution can be characterized by using a number of features such 

as mean, variance, skewness and kurtosis. The measure of kurtosis is considered to 

assess whether the data are peaked or flat relative to the Normal distribution. 
Mandelbrot (1963) provided a fat-tail distribution model in finance. Barndorff-

Nielsen (1977) introduced the generalized hyperbolic distribution (GHD). Lévy 

stochastic models have been proposed in early 1980s, since when different stylized 
features of financial assets have been introduced. These models have been 

extensively used in financial literature, see for example Schoutens (2003). Eberlein 

and Keller (1995) investigated the application of hyperbolic distributions in 

finance. Corlu et al. (2015) performed the modelling of exchange rates and their 
suitable distributions. Linden and Mikael (2001) model stock share returns using 

the Laplace mixture distribution. Recently, Chu et al. (2015) provided a statistical 

analysis of log-returns of the exchange rate of BTC. Dyhrberg (2016) modeled and 
predicted the volatility of BTC, gold and dollar. Chan et al. (2017) have obtained 

that the generalized hyperbolic distribution gives the best fit for the Bitcoin and 

LiteCoin and also they have concluded that the normal inverse Gaussian 
distribution gives the best fit for other cryptocurrencies which include Dash, 

Monero and Ripple. Bariveara et al. (2017) have performed a comparative analysis 

of Bitcoin and standard currencies dynamics. Their study focuses on the analysis of 

returns at different time scales. In Osterrieder and Lorenz (2017), a statistical 
assessment of Bitcoin and its extreme tail behavior have been performed. In risk 

management the standard deviation (SD) represents a commonly used risk 

measure. Value-at-Risk (VaR) is a quantile based risk measure suitable for non-
normal distributions. For heavy-tailed distribution the risk measure has extreme 

behaviour. A variety of literature on Value-at-Risk (VaR) and Expected Shortfall 

(ES) can be accessed following Artezner (1997), RiskMetrics Group (1994), 
Artezner et al. (1999), Jorion (2001) and McNeil et al. (2005). 
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The paper is developed as follows. Section 2 is dedicated to a statistical 
overview of the underlying data and its descriptions. Section 3 examines the 

statistical properties of the Bitcoin Cash data by fitting a wide range of fat-tail 

parametric distributions to the data. Section 4 presents our results and discussion 
on fitted distribution and risk modelling. Section 5 concludes the paper. 

2. Data 
The data used include the daily Open, Close, Low and High prices (in US 

dollar) for the BCH time series, available online at http://www.coindesk.com/price. 
A time series consisting in 235 observations has been considered, from 31th May 

2018 to 30th January 2019. Let 𝑥𝑡, 𝑡 ∈ [0, 𝑇] denote the BCH prices data. The 

percentage logarithmic returns of daily prices are given by: 

                          𝑅𝑡 = log (
𝑥𝑡

𝑥𝑡−1
) × 100,   𝑡 ∈ [0, 𝑇].                               (1)                                                                                 

Summary statistics of the underlying log returns of the exchange rates of 

BCH (USD) are presented in Tables 1 and 2, respectively. Table 1 displays the 

summary statistics of BCH data series from 31th May 2018 to 30th Jan 2019. The 
results indicate that the lowest daily return of approximately A share of 57% 

corresponds to the Low-returns data from Jun-2018 to Jan-2019, while the best day 

in the data series, approximately 56%, was found. The returns have a small positive 
skewness which is slightly high for the case of High-returns data. More 

importantly, quite high kurtosis has found again for the Low-returns. The daily 

mean of Open-Low and High-Close returns series are the same. The Jarque–Bera 

(JB) test clearly rejects that data is normally distributed. The Augmented Dickey-
Fuller (ADF) test suggests the small p-values therefore, returns exhibit stationarity. 

According to Ljung–Box (LB) test only Low-prices data series exhibits 

independence. The daily mean is at most one-tenth of the daily volatility of Low-
returns. Therefore, it leads to the complexity of the risk measures. The evidence of 

high fluctuation in BCH returns volatility is also evident from Table 1. 

 

Table 1. BCH (USD) Basic Statistics 

Returns Close Open High Low 

No Obs. 235 235 235 235 

Min -36.51 -37.32 -35.52 -56.37 
Max 37.82 37.62 33.98 55.61 

Mean -0.90 -0.94 -0.90 -0.94 

Variance 50.03 49.57 47.59 70.81 

Skewness 0.12 0.044 0.27 0.059 
Kurtosis 9.99 10.37 9.65 20.60 

JB 0.00 0.00 0.00 0.00 

LB 0.0001 0.000 0.0007 0.446 
ADF 0.01 0.01 0.01 0.01 

On the other hand, the Low-returns series is highly-peaked and volatile as 

compared to others, as can be seen in Figure 1.  

http://www.coindesk.com/price
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Figure 1. Kurtosis of BCH Low Returns 

 

Further, we consider percentage log-returns of each month of BCH daily 

data series. For this purpose, the whole dataset has been divided into months. In the 
case of month-wise daily data returns we have obtained the unstable daily mean in 

all four possible states. An increasing volatility pattern has been noticed during the 

period Nov-2018 to Jan-2019. The monthly divided returns have both negatively 
and positively skewed distribution while the September to October 2018 returns 

has higher kurtosis value which leads to fat-tail behavior. During the month of Jan-

2019, the Low-returns data series exhibit heavier tail as compared to all others. 

Volatility has been frequently used as the most common measure of market 
uncertainty. We remark that month-wise daily returns demonstrate volatility 

clustering property. Table 2 displays monthly wise summary statistics of BCH data 

series.  
 

                         Table 2. Summary Statistics of BCH Monthly Return Series 

Month No Obs. Min Max Mean SD Skew Kurt JB LB 

Jun 25 -19.11 8.36 -1.24 6.30 -0.87 3.78 0.08 0.33 
-21.32 8.29 -1.22 6.93 -0.95 3.88 0.05 0.74 

-16.49 8.81 -1.27 6.50 -0.77 4.11 0.00 0.71 

-19.79 8.29 -1.28 6.29 -1.20 5.32 0.26 0.01 
Jul 29 -6.78 9.60 0.22 4.50 0.54 2.44 0.40 0.43 

-7.54 10.87 0.12 4.51 0.53 2.70 0.46 0.70 
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-6.65 9.01 0.00 3.51 0.43 3.24 0.28 0.21 
-7.16 10.50 -0.10 4.06 0.68 2.83 0.66 0.83 

Aug 31 -10.45 13.73 -0.42 5.71 0.37 3.17 0.61 0.79 

-11.63 13.46 -0.68 5.72 0.38 3.35 0.52 0.82 

-11.00 10.50 -0.59 4.79 -0.43 3.58 0.02 0.82 
-10.26 16.42 -0.51 5.41 0.78 4.47 0.66 0.86 

Sep 29 -14.87 19.97 -0.56 5.43 1.15 8.95 0.00 0.99 

-15.08 19.90 -0.47 5.48 1.07 8.63 0.00 0.10 
-17.11 16.94 -0.49 5.13 0.02 10.69 0.00 0.99 

-15.39 20.53 -0.60 5.27 1.46 11.13 0.00 0.99 

Oct 31 -14.59 8.53 -0.53 3.72 -1.31 7.84 0.00 0.83 
-14.69 5.15 -0.75 3.40 -2.12 9.48 0.00 0.46 

-14.77 5.86 -0.68 3.66 -1.90 9.55 0.00 0.59 

-12.13 12.83 -0.50 4.21 0.68 6.60 0.00 0.32 

Nov 30 -23.77 16.34 -2.55 8.26 -0.30 3.48 0.55 0.00 
-23.11 16.30 -2.43 8.12 -0.35 3.50 0.49 0.00 

-20.52 13.35 -2.43 8.78 -0.21 2.56 0.37 0.02 

-20.12 19.35 -2.52 9.90 0.33 3.77 0.74 0.00 
Dec 29 -36.51 37.82 -0.88 13.45 0.35 4.71 0.05 0.04 

-37.32 37.62 -0.84 13.36 0.29 4.91 0.03 0.03 

-31.19 35.34 -0.85 12.30 0.45 5.31 0.23 0.05 
-35.52 33.98 -0.98 13.35 0.31 4.10 0.10 0.00 

Jan 30 -18.06 7.67 -1.24 5.18 -1.03 5.08 0.00 0.78 

-18.00 7.68 -1.34 4.92 -1.19 5.66 0.00 0.81 

-56.37 55.61 -1.32 15.41 0.12 14.55 0.00 0.89 
-20.17 7.48 1.14 5.02 -1.66 8.09 0.00 0.82 

 

Figure 2 reveals combined time series plot of daily Close, Open, Low and 

High returns for both the whole data series and monthly divided series. 

  
Figure 2. Time Series plot of BCH (USD) returns 

 
The results presented in Table 3 reveal the strength of the dependence 

between Open-Close-Low-High return series for the whole period. A positive 
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correlation exists in all cases where no evidence of inverse correlation has been 
found.   

 

Table 3. Correlation matrix of BCH (USD) 
 

 

 

   

 

 

 

The results displayed in Table 4 indicate that month-wise daily returns 
have a relatively high correlation for the months of Jul-Sep, Sep-Dec, and Nov-

Dec-Jan 2019.  

     

Table 4. Correlation analysis of BCH (USD) monthly divided daily closed 

returns 

                     

 
 

 

3. Lévy Processes and Return Distributions 
 

The selection of an appropriate probability distribution model in finance is 
crucial. Designing the best-fit distribution is the most important step in risk 

modelling. Black-Scholes theory (Black-Scholes 1973) assumes that asset prices 

follow Geometric Brownian Motion (GBM). On the other hand, real asset prices 

such as daily returns show heavy tails, which indicates a behaviour different from 
the Normal distribution and it leads to kurtosis higher than the Normal distribution. 

The history of heavy tails in finance began in 1963 with Pareto distribution 

proposed by Mandelbrot (1963). The proposed model is known as a stable model 
of asset returns. In finance, modelling asset returns as a heavy-tailed and highly 

peaked random variable has been well documented. Lévy processes display many 

appealing properties in financial economics. These models can be thought of as 
combination of diffusions and jump processes (Chevalier & Goutte, (2015). In 

economies, the occurrence of unusual events leads to quite complex dynamics for 

 Open Close Low High 

Open 1.000 0.263 0.458 0.691 

Close 0.263 1.000 0.557 0.637 

Low 0.458 0.557 1.000 0.415 
High 0.691 0.637 0.415 1.000 

 Jun Jul Aug Sep Oct Nov Dec Jan 

Jun 1.00 0.03 -0.14 0.04 -0.11 -0.05 -0.11 -0.09 

Jul 0.03 1.00 -0.18 0.29 0.01 0.06 0.04 -0.02 

Aug -0.14 -0.18 1.00 0.05 -0.06 -0.00 0.13 0.18 

Sep 0.04 0.29 0.05 1.00 -0.08 -0.07 0.42 -0.20 

Oct -0.11 0.01 -0.06 -0.08 1.00 0.06 -0.09 0.02 

Nov -0.05 0.06 -0.00 -0.07 0.06 1.00 -0.28 -0.25 

Dec -0.11 0.04 0.13 0.42 -0.09 -0.28 1.00 0.18 

Jan -0.09 -0.02 0.18 -0.20 0.02 -0.25 0.18 1.00 
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the variable that economist studies. Therefore, the normal behavior of economies is 
frequently interrupted. This phenomenon uncovers the danger of extreme 

occurrences. Fat-tailed models have been used enormously in capturing the tail 

risks of equity markets, optimal portfolio choice, economic hedging, and risk 
management. In theoretical and applied macroeconomics, researchers have 

extensively used Gaussian assumptions. But, on the other hand, a huge number of 

studies have shown fat-tailed models as a better choice than the Gaussian model. 

The growth rates of macroeconomic variables are seldom normally distributed. 
Lévy processes in finance are based on more general infinitely divisible 

distributions comparative to the Normal distribution. These infinitely divisible 

distributions must be able to represent skewness and excess kurtosis. A distribution 

is called infinitely divisible if for every positive integer 𝑛, the characteristic 

function 𝜙(𝑢) is also the n-th power of a characteristic function. Therefore, for 

every infinitely divisible distribution a Lévy stochastic process can be defined. 

Some examples of these frequently used parametric distributions in finance are 
represented by the generalized hyperbolic distributions (GHD), hyperbolic 

distribution (HYP), Normal Inverse Gaussian distribution (NIG), variance-gamma 

distribution(VG). Student’s t (t) and its asymmetric version are also frequently used 
in financial modelling.  

The Generalized Hyperbolic Distribution (GHD) is defined in Barndorff-

Nielsen (1977). The GHD is an infinitely divisible distribution. We can define 
Lévy processes based on GHD as the stationary process, which starts at zero and 

has independent increments. The density function of generalized hyperbolic 

distribution (GHD) is given by: 

 𝑓𝑋(𝑥) = 𝑎(𝜆, 𝛼, 𝛽, 𝛿)(𝛿
2 + (𝑥 − 𝜇)2)

𝜆−
1
2

2 𝐾𝜆−1/2 (𝛼√𝛿2 + (𝑥 − 𝜇)2) 𝑒
𝛽(𝑥−𝜇)   (2)  

where 𝑎(𝜆, 𝛼, 𝛽, 𝛿) =
(𝛼2−𝛽2)

𝜆/2

√2𝜋𝛼𝜆−1/2𝛿𝜆𝐾𝜆(𝛿√𝛼
2−𝛽2)

 and 𝑥, 𝜇, 𝜆 ∈ ℝ, 0 ≤ 𝛿, 0 ≤ |𝛽| ≤ 𝛼, 

also 𝛾 = √𝛼2 − 𝛽2, 𝐾𝑣 denotes modified third order Bessel function with index 𝑣. 

The parameter 𝜆 defines sub-class of the distribution and 𝜇, 𝛿 represent scale and 

location parameters respectively. If 𝛽 = 0 the distribution is symmetric. For 𝜆 = 1, 

then Hyperbolic distribution (HYP) is given by the density function 

               𝑓𝑋(𝑥) =
√𝛼2−𝛽2

2𝛿𝛼𝐾1(𝛿√𝛼
2−𝛽2)

𝑒
(−𝛼√𝛿2+(𝑥−𝜇)2+𝛽(𝑥−𝜇))

                                  (3) 

where, 𝑥, 𝜇 ∈ ℝ, 0 ≤ 𝛿, |𝛽| ≤ 𝛼.  
The NIG distribution in Barndorff-Nielsen (1995) is an infinitely divisible 

distribution. This class of distributions has semi-heavy tails. The NIG distribution 

is a special case of the GHD for 𝜆 = −1/2 . The random variable 𝑋 follows a NIG 

distribution if its density function is give n by:                         

  𝑓𝑋(𝑥) =
𝛼𝛿

𝜋
𝑒
(𝛿√𝛼2−𝛽2 +𝛽(𝑥−𝜇)) 𝐾1(𝛼√𝛿

2+(𝑥−𝜇)2)

√𝛿2+(𝑥−𝜇)2
                                    (4)        

where 𝑥, 𝜇 ∈ ℝ, 0 ≤ 𝛿, 0 ≤ |𝛽| ≤ 𝛼.  
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The function 𝐾1(𝑥) = ∫ exp (−
1

2
𝑥(𝜏 + 𝜏−1)𝑑𝜏

∞

0
 is a modified Bessel function of 

third order and index 1. If we set 𝛿 = 0 then we obtain another class of the GHD 

known as VG. This is possible when 𝜆 > 0 and 𝛼 > |𝛽|.  
The class of VG distributions was introduced by Madan and Seneta (1987) 

as a model for stock returns. The density function of VG is given by: 

           𝑓𝑋(𝑥) =
(𝛼2−𝛽2)

𝜆

√𝜋Γ(𝜆)(2𝛼)
𝜆−

1
2

|𝑥 − 𝜇|𝜆−
1

2 𝐾𝜆−1/2(𝛼|𝑥 − 𝜇|)𝑒
𝛽(𝑥−𝜇)                    (5) 

The Student’s t distribution due to Gosset (1908) is given by: 

             𝑓𝑋(𝑥) =
𝐾(𝜈)

𝜎
[1 +

(𝑥−𝜇)2

𝜎2𝜈
]
−
1+𝜈

2
                                                                   (6) 

where −∞ < 𝑥 < +∞, −∞ < 𝜇 < +∞, 𝜎 > 0, 𝜈 > 0. 

Also, 𝐾(𝜈) = √𝜈𝐵(𝜈/2, 1/2) and 𝐵 denotes the beta function given by: 

                                      𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡
1

0
  

Zhu & Galbraith (2010) introduced the asymmetric student’s t distribution. 
The density function of the distribution is given by: 

𝑓𝑋(𝑥) =
1

𝜎

{
 
 

 
 𝛼

𝛼∗
𝐾(𝜈1) {1 +

1

𝜈1
[
𝑥−𝜇

2𝜎𝛼∗
]
2
}
−
1+𝜈1
2

,             if 𝑥 ≤ 𝜇           

1−𝛼

1−𝛼∗
𝐾(𝜈2) {1 +

1

𝜈2
[

𝑥−𝜇

2𝜎(1−𝛼∗)
]
2
}
−
1+𝜈2
2

,     if 𝑥 > 𝜇

           (7)                                     

where −∞ < 𝑥 < +∞, −∞ < 𝜇 < +∞, 𝜎 > 0, 𝜈1 > 0, 𝜈2 > 0, 0 < 𝛼 < 1 and 

𝛼∗ =
𝛼𝐾(𝜈1)

𝛼𝐾(𝜈1) + (1 − 𝛼)𝐾(𝜈2)
 

The maximum likelihood method was used to fit the underlying 
distributions. The maximum-likelihood estimator is the parameter set that 

maximizes the likelihood function. The maximum likelihood function is given by: 

                                     𝐿(Θ) = ∏  𝑓𝑋(𝑥𝑖; Θ)
𝑛
𝑖=1                                       (8) 

or the log-likelihood  

                                     ln𝐿(Θ) = ∑ 𝑓𝑋(𝑥𝑖; Θ)
𝑛
𝑖=1                                     (9) 

where (𝑥1 , 𝑥2, . . . , 𝑥𝑛) contains the observed values of the random variable 𝑋 and 

Θ = (𝜃1, 𝜃2,   .  .  , 𝜃𝑚) are parameters specifying the distribution of random 

variable. We put Θ̂ = (𝜃1̂, 𝜃2̂ ,   .  .  . , 𝜃�̂�) and Θ̂ denote maximum likelihood 

estimate. In order to choose the best-fit distribution, we consider the Akaike 

information criterion (AIC), Akaike & Hirotugu (1974). The AIC is given by: 

                                       AIC = 2𝑚 − 2ln𝐿(Θ̂)                                     (10) 

The smaller the value of criteria better the fitted model. The Akaike information 
criterion is comprised bias (log likelihood) and variance (parameters) (Hu, 2007), 

and the larger the log likelihood the better the goodness of fit. 
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4. Fitted Distributions and Risk Modeling 
Financial returns that exhibit heavy-tails are profound to risk managers. It 

is evident from our data analysis results that; underlying returns have not normally 

distributed and therefore exhibit fat-tail behavior. We fit various distributions to 
given financial time series data and, empirical features have been captured with the 

description of a few parameters. These include at least, the volatility parameter, 

location parameter, asymmetry measure and finally a parameter describing the 

decay of the tails. Table 5 presents the parameters estimates of fitted distributions 
of the Close-return series. Throughout the estimation results, 0.000 should not be 

interpreted as an absolute zero. We have found evidence of fat-tail distribution for 

all returns series. Therefore, implemented distributions include asymmetric 
(symmetric) types of GHD, HYP, NIG, VG, and t. The GHD and asymmetric t 

distribution did not converge in some cases. 

 

Table 5. Fitted distributions parameter estimates and diagnostic test for BCH 

Close-returns 

          

Table 6 displays the parameters estimates of fitted distributions of the Open-return 
series. 

 

Table 6. Fitted distributions parameter estimates and diagnostic test for BCH 

Open-returns 

Parameter lambda alpha mu sigma gamma AIC 

HYP 1.000 

(1.000) 

0.000 

(0.001) 

-0.570 

(-0.384) 

6.386 

(6.462) 

-0.851 

(0.000) 

1514.47 

(1515.75) 

NIG -0.500 
(-0.500) 

0.261 
(0.258) 

-0.206 
(-0.465) 

7.149 
(7.231) 

-0.701 
(0.000) 

1512.26 
(1511.67) 

T -1.091 

(-1.092)  

0.000 

(0.000) 

-0.372 

(-0.556) 

12.14 

(12.565) 

-1.348 

(0.000) 

1516.27 

(1514.96) 
VG 0.618 

(0.553) 

(0.000) 

(0.000) 

-0.081 

(-0.081) 

6.949 

(6.915) 

0.000 

(-0.278) 

1506.51 

1507.35 

Parameter lambda alpha mu sigma gamma AIC 

GHD (0.516) (0.012) (-0.072) (6.878) (0.000) (1492.73) 

HYP 1.000 

(1.000) 

0.000 

(0.000) 

-0.0371 

(-0.379) 

6.200 

(6.279) 

-0.904 

(0.000) 

1500.94 

(1502.34) 

NIG -0.500 
(-0.500) 

0.194 
(0.191) 

-0.314 
(-0.495) 

7.244 
(7.334) 

-0.628 
(0.000) 

1495.51 
(1494.74) 

T (-1.000) (0.000) (-0.575) (11.335) (0.000) (1499.51) 

VG 0.542 
(0.511) 

(0.000) 
(0.0000) 

-0.006 
(-0.096) 

7.059 
(6.650) 

-0.694 
(0.000) 

(1487.97) 
(1428.23) 
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Table 7 presents the parameters estimates of fitted distributions of the Low-return 
series. 

 

Table 7. Fitted distributions parameter estimates and diagnostic test for BCH 

Low-returns 

 

Table 8 displays the parameters estimates of fitted distributions of the High-return 
series. 

 

Table 8. Fitted distributions parameter estimates and diagnostic test for BCH 

High-returns 

 

Based on AIC, the VG distribution best fit Close, Open and Low returns. High 
returns series followed GHD with a minimum value of AIC. The estimates of 

symmetric cases for all distribution have given in parenthesis. The results of best 

fitting distributions show that BCH (USD) percentage log returns exhibits fat-tail 
behavior. The Log-Likelihood of BCH returns fitted distributions are presented in 

Table 9. 

 

Parameter lambda alpha mu sigma gamma AIC 

GHD (0.314) (0.0174) (0.223) (7.928) (0.000) (1495.92) 

 

HYP 1.000 

(1.000) 

0.000 

(0.000) 

0.314 

(-0.003) 

6.509 

(6.659) 

-1.259 

(0.000) 

1525.60 

(1530.01) 

NIG -0.500 

(-0.500) 

0.109 

(0.099) 

0.114 

(-0.064) 

8.314 

(8.722) 

-1.056 

(0.000) 

1506.51 

(1507.50) 

T (-1.000) (0.000) (-0.268) (1329.8) (0.000) (1514.44) 

VG 0.407 

(0.468) 

0.000 

(0.000) 

0.301 

(0.301) 

8.503 

(7.581) 

-0.084 

(0.000) 

1491.69 

(1492.50) 

Parameter lambda alpha mu sigma gamma AIC 

GHD 0.028 
(0.006) 

0.118 
(0.122) 

-0.609 
(-0.677) 

7.027 
(7.052) 

-0.294 
(0.000) 

1462.68 
(1461.00) 

HYP 1.000 

(1.000) 

0.000 

(0.000) 

-0.692 

(-0.747) 

5.982 

(5.988) 

-0.210 

(0.000) 

1481.79 

(1480.04) 

NIG -0.500 
(-0.500) 

0.120 
(0.121) 

-0.779 
(-0.804) 

7.481 
(7.482) 

-0.124 
(0.000) 

1464.97 
(1463.03) 

T -1.000 

(-1.000) 

0.000 

(0.000) 

-0.893 

(-0.893) 

3119.0 

(1890.61) 

4.690 

(0.000) 

1474.43 

(1472.43) 
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Table 9. Log-Likelihood of BCH returns fitted distributions 
 

 

 

4.1. Q-Q Plots 

 

The adequacy of the best fitting distributions is assessed in terms of Q-Q plots. The 

QQ-plot for the best-fitted distribution for each of the four series is given in Fig. 3. 
For BCH Close-returns, best fitting VG distribution tracks the data very well but 

not the lower tail. For BCH Open and Low returns, only upper and the lower parts 

of data have a slightly different track, but in the middle, it captures well. Finally, 
the BCH High-returns, best-fitted distribution follows the track of data from upper-

middle to downwards. 

 
 

 

Dist T NIG HYP GHD VG 

Close -754.482 

(-754.482) 

-752.13 

(-752.83) 

-753.23 

(-754.87) 

 -749.76 

(-750.25) 

Open   

(-746.75) 

-743.75 

(-744.37) 

-746.59 

(-748.17) 

  

(-742.36) 

-739.98 

(-741.11) 
Low -759.98 

(-733.21) 

-728.48 

(-728.51) 

-736.89 

(-737.02) 

-726.34 

(-726.50) 

-730.41 

(-730.92) 

High   

(-754.22) 

-749.25 

(-750.75) 

-758.85 

(-762.60) 

  

(-743.96) 

-741.84 

(-743.25) 
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Figure 3. QQ Plot of BCH Close-Open-Low-High Returns 

 

4.2. Risk Modeling 

In the case of normally distributed financial returns, the standard deviation 

or volatility of returns captures risk adequately. Financial returns of BCH exhibit 
fat-tail distributions. Therefore, it can be misleading. Another, most common risk 

measure is Value-at-Risk (VaR). It is used to compute losses with respect to market 

dynamics. VaR has been used frequently in credit risk. Let {𝑋𝑡}𝑡∈𝑇 denotes BCH 

time series process. Suppose 𝑓 and 𝐹 denotes marginal density function and 

distribution function respectively. Then, VaR is a quantile of distribution function 

exceeded with probability 1 − 𝑝. See details in Jorion (2001) and McNeil et al. 

(2005). Let 𝑋 is a random variable then, the Value-at-Risk corresponding to the 

probability level α ∈ [0,1] is given by: 

                         VaRα(𝑋) = inf{𝑥 ∈ ℝ | 𝑃(𝑋 < −𝑥) ≤ 1 − α}               (11) 

                         VaRα(𝑋) = inf{𝑥 ∈ ℝ:𝐹(𝑥) ≥ α}                                  (12)                

On other hand, if 𝑅𝑡  denotes log-returns of the underlying time series then, 

VaRα is given by: 

                         VaRα = 𝜇𝑡 + 𝜎𝑡q
−1(α)                                                   (13)    

where q denotes quantile function of standardized log-returns. Generally, α is taken 

to be 0.01 or 0.05. For example, if we say that 1 percent 5-days VaR is 1 dollar 
then, it means over the next 5 days, there is a 1 percent chance of losing at least 1 

dollar. 

Artzner et al. (1999) proposed an alternative risk measure of financial risk 
referred to as the Expected Shortfall (ES) or tail-VaR. It provides information on 

the entire tail of the distribution as a single measure. The ES measure is sub-

additive and allows to compute expected loss when losses exceed VaR. Expected 

Shortfall estimates the potential size of the loss exceeding VaRα(𝑋).  
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Let 𝑋 be a random variable. The Expected Shortfall measure corresponding 

to the random variable 𝑋 and the probability level α is given by: 

                              E(Sα) = E(𝑋|𝑋 ≥ VaRα(𝑋))                                   (14)                                               

Table 10 and Table 12 display VaR estimates of BCH closing returns, 

which are represented in Fig.4. We have compared the results with best-fitted VG 
against, empirical distribution (EMP), GHD, HYP, NIG, t, and the Normal. We 

calculate VaR over the period, from the 95% to 99.9% probability level. Therefore, 

probability of losses exceeding VaR is given by 𝑝 = (0.001, 0.05, 0.001). VaR is a 
quantile on the underlying return distributions for BCH data. It is evident from Fig 

4 that VG and HYP track the empirical level quite good. Table 10 provides 

estimation results ranging from 0.1%, 1%, 2%, 3%, 4% and 5%.  

 
Figure 4. VaR estimates of BCH Close price returns 

 

The risk is overestimated by NIG and t models, while normal distribution 
underestimates the risk. For the case of BCH Low-returns, we provide VaR 

computations on best-fitted VG and comparison with the empirical and normal 

distribution (see Table 10). 

 

Table 10. Value-at-Risk estimates of BCH (USD) closing price return series 

  

 

 

 

 

 

 

 

 

𝛂 0.1% 1% 2% 3% 4% 5% 

EMP 33.531 18.832 17.538 14.597 13.114 11.729 
VG 34.959 21.106 17.030 14.678 13.026 11.757 

HYP 31.340 19.914 16.475 14.463 13.035 11.928 

NIG 49.734 25.159 19.019 15.775 13.642 12.088 

t 107.591 27.392 18.840 15.140 12.936 11.423 
NOR 22.767 17.364 15.435 14.212 13.292 12.543 
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The Expected Shortfall measure is computed for the best-fitted VG against 
empirical, NIG, HYP, t and normal distribution. The normal distribution and HYP 

underestimate the ES, whereas t and NIG overestimates it. Only the VG model 

follows the empirical track, as results from Table 11.  

 

Table 11. Expected Shortfall estimates of BCH closing price return series 

       

         

Value-at-Risk estimates for BCH low prices returns are presented in Table 12. 

         

Table 12. VaR estimates of BCH low price return series 
                 

           

 

 

 

 

Expected Shortfall estimates for BCH low prices returns are displayed in Table 13. 
Again, the VG model estimates well as compare to others.  

 

Table 13. ES estimates of BCH low price return series 
 

 

4. Conclusions 

This paper provides a statistical analysis of several stochastic models of 
fat-tail returns and risk models. The evidence of fat-tailed returns distribution for 

the BCH data is investigated, by performing a statistical analysis of Bitcoin Cash 

(BCH) in the U.S. dollar. The results obtained by analyzing daily Close, Open, 
Low, and High returns of BCH data series show that the returns follow the 

generalized hyperbolic distribution and variance gamma distribution. 

Recently, the use of heavy-tail distribution in risk management and 
financial time series has got significant attention in the financial literature. The 

research on famous cryptocurrency Bitcoin (BTC) suggests that the generalized 

𝛂 0.1% 1% 2% 3% 4% 5% 

EMP 36.511 26.467 23.149 20.314 19.015 17.931 
VG 41.089 27.106 22.968 20.569 18.880 17.577 

HYP 36.302 24.876 21.437 19.425 17.997 16.890 

NIG 62.119 35.614 28.646 24.853 22.301 20.406 
t 829.355 123.019 72.685 54.057 44.033 37.654 

NOR 24.725 19.761 18.032 16.951 16.147 15.499 

𝛂 0.1% 1% 2% 3% 4% 5% 

EMP 31.935 20.009 16.254 14.327 12.672 11.846 
VG 33.134 20.018 16.177 13.967 12.418 11.231 

NOR 22.223 16.953 15.073 13.880 12.982 12.252 

𝛂 0.1% 1% 2% 3% 4% 5% 

EMP 35.527 25.275 22.742 19.738 18.429 17.396 
VG 38.959 25.696 21.784 19.521 17.929 16.704 

NOR 24.134 19.291 17.606 16.551 15.767 15.135 
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hyperbolic distribution gives the best fit (see Chen et al., 2017). We have analyzed 
the Bitcoin Cash returns instead of the Bitcoin. The results obtained in this paper 

prove that variance-gamma distribution best fit the close, open and low returns, 

where high returns follow the generalized hyperbolic. In some cases, a small 
difference in AIC has been found. For the entire period (Jun 2018 to Jan 2019) 

peaks of the returns, distribution has found much higher and tails are fatter than the 

Normal distribution. Therefore, there are more trading days when underlying prices 

have not been predicted using Normal distribution. Open and High return series for 
whole period shows high correlation. On the other hand, monthly-divided daily 

returns follow the high peak distribution in a few cases. BCH returns in September 

and December are highly correlated. The three months, November and December 
in 2018, respectively January 2019, have been found to be the most volatile. The 

monthly-divided daily returns of Open, Close, Low and High returns follow quite 

the same volatility pattern except for Jan 2019, when Low-return series has almost 
16 % volatility. Therefore, if we can capture predictability in volatility, it may be 

possible to improve portfolio decisions, risk management option pricing, among 

other applications. Empirical facts from our study explore high volatility in the 

exchange rate of BTC to USD. Therefore, investors have faced severe market risk. 
Besides volatility, computations performed using two other risk measures, 

respectively Value-at-Risk and Expected Shortfall, show the VG model follows the 

empirical track. 
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